

# The Quantum Countdown Has Begun

## Why Quantum Readiness Can't Wait



Quantum computing is no longer a distant or speculative concept. It is advancing steadily, backed by significant public and private investment, and with it comes one of the most consequential cybersecurity challenges of the next decade.

Organizations that rely on today's public-key cryptography—which is effectively all modern organizations—face a growing and often misunderstood risk: sensitive data can be intercepted and stored today, only to be decrypted later once quantum capabilities mature.

This is known as the **“harvest now, decrypt later”** threat. And it fundamentally changes the cybersecurity timeline.

Quantum risk is no longer about *if* organizations will need to transition to quantum-safe cryptography, but *when*. Increasingly, the answer is **now**.

## The Strategic Timeline Has Shifted

Unlike many emerging technologies, quantum computing does not require immediate operational deployment to create risk. Adversaries do not need a fault-tolerant quantum computer today to cause damage tomorrow. They only need the ability to collect and retain encrypted data now.

For organizations that manage long-lived or high-value data—student records, research data, intellectual property, healthcare information, financial records, identity credentials—the consequences of delayed action are already accumulating.

This reality has prompted clear guidance from national security authorities.

The National Security Agency has stated:

*“All organizations should begin planning for Post-Quantum Cryptography (PQC) now.”*

This is not a future-state recommendation. It reflects the long lead times required for cryptographic migration and the reality that encrypted data is already being harvested across sectors including higher education, government, healthcare, and financial services.

## What Quantum Readiness Really Means

Quantum readiness is often misunderstood as a wholesale replacement of cryptographic systems or an immediate deployment of new algorithms. In practice, effective quantum readiness is neither rushed nor purely technical.

A true **Quantum Readiness program** focuses on preparation, visibility, and agility. It typically includes:

- **Building cryptographic inventories**  
Understanding where cryptography is used across applications, infrastructure, identities, and third-party dependencies.
- **Identifying long-lived and high-value data at risk**  
Prioritizing data whose confidentiality must be preserved for years or decades.
- **Assessing quantum-related threats**  
Evaluating exposure across identity systems, networks, applications, and data stores.
- **Designing a PQC-aligned migration roadmap**  
Planning for phased, risk-based adoption aligned with NIST-selected algorithms.

- **Preparing for hybrid cryptographic environments**

Supporting transitional models where classical and post-quantum algorithms coexist.

This work is not a one-time project. It is a **multi-year transition** that requires strategy, governance, and coordination across security, IT, legal, procurement, and executive leadership.

## Why Waiting Creates Compounding Risk

Organizations that defer quantum readiness often assume they are avoiding unnecessary complexity. In reality, delay increases both cost and exposure.

Common consequences include:

- **Long-term exposure of sensitive data** that cannot be retroactively protected
- **Rushed cryptographic transitions** driven by regulatory or incident pressure
- **Compliance and audit gaps** as expectations evolve faster than controls
- **Loss of stakeholder trust** when preparedness lags behind guidance

Quantum-safe transformation is not merely a cryptographic upgrade. It is an **enterprise risk management and governance issue** that intersects with data stewardship, identity assurance, resilience planning, and institutional accountability.

## Quantum Readiness as a Resilience Imperative

Cyber resilience depends on the assumption that security controls remain effective as threat models evolve. Quantum computing challenges that assumption at a foundational level.

Encryption, digital signatures, authentication mechanisms, and trust frameworks underpin nearly every critical system. Without cryptographic agility—the ability to adapt cryptographic controls over time—organizations risk embedding fragility into their security architecture.

Quantum readiness provides the structure to address this risk responsibly, methodically, and defensibly.

## Final Thought

Quantum readiness is rapidly becoming a defining element of resilient cybersecurity strategy. Organizations that act early gain time, control, and defensibility. Those that delay inherit compounded risk—technical, operational, and reputational.

The window to prepare responsibly is open now. It will not remain open indefinitely.